Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Significance of filamin A in mTORC2 function in glioblastoma.

Identifieur interne : 000C19 ( Main/Exploration ); précédent : 000C18; suivant : 000C20

Significance of filamin A in mTORC2 function in glioblastoma.

Auteurs : Naphat Chantaravisoot [États-Unis] ; Piriya Wongkongkathep [États-Unis] ; Joseph A. Loo [États-Unis] ; Paul S. Mischel [États-Unis] ; Fuyuhiko Tamanoi [États-Unis]

Source :

RBID : pubmed:26134617

Descripteurs français

English descriptors

Abstract

BACKGROUND

Glioblastoma multiforme (GBM) is one of the most highly metastatic cancers. GBM has been associated with a high level of the mechanistic target of rapamycin complex 2 (mTORC2) activity. We aimed to observe roles of mTORC2 in GBM cells especially on actin cytoskeleton reorganization, cell migration and invasion, and further determine new important players involved in the regulation of these cellular processes.

METHODS

To further investigate the significance of mTORC2 in GBM, we treated GBM cells with PP242, an ATP-competitive inhibitor of mTOR, and used RICTOR siRNA to knock down mTORC2 activity. Effects on actin cytoskeleton, focal adhesion, migration, and invasion of GBM cells were examined. To gain insight into molecular basis of the mTORC2 effects on cellular cytoskeletal arrangement and motility/invasion, we affinity purified mTORC2 from GBM cells and identified proteins of interest by mass spectrometry. Characterization of the protein of interest was performed.

RESULTS

In addition to the inhibition of mTORC2 activity, we demonstrated significant alteration of actin distribution as revealed by the use of phalloidin staining. Furthermore, vinculin staining was altered which suggests changes in focal adhesion. Inhibition of cell migration and invasion was observed with PP242. Two major proteins that are associated with this mTORC2 multiprotein complex were found. Mass spectrometry identified one of them as Filamin A (FLNA). Association of FLNA with RICTOR but not mTOR was demonstrated. Moreover, in vitro, purified mTORC2 can phosphorylate FLNA likewise its known substrate, AKT. In GBM cells, colocalization of FLNA with RICTOR was observed, and the overall amounts of FLNA protein as well as phosphorylated FLNA are high. Upon treatments of RICTOR siRNA or PP242, phosphorylated FLNA levels at the regulatory residue (Ser2152) decreased. This treatment also disrupted colocalization of Actin filaments and FLNA.

CONCLUSIONS

Our results support FLNA as a new downstream effector of mTORC2 controlling GBM cell motility. This new mTORC2-FLNA signaling pathway plays important roles in motility and invasion of glioblastoma cells.


DOI: 10.1186/s12943-015-0396-z
PubMed: 26134617
PubMed Central: PMC4489161


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Significance of filamin A in mTORC2 function in glioblastoma.</title>
<author>
<name sortKey="Chantaravisoot, Naphat" sort="Chantaravisoot, Naphat" uniqKey="Chantaravisoot N" first="Naphat" last="Chantaravisoot">Naphat Chantaravisoot</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095</wicri:regionArea>
<wicri:noRegion>90095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wongkongkathep, Piriya" sort="Wongkongkathep, Piriya" uniqKey="Wongkongkathep P" first="Piriya" last="Wongkongkathep">Piriya Wongkongkathep</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095</wicri:regionArea>
<wicri:noRegion>90095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Loo, Joseph A" sort="Loo, Joseph A" uniqKey="Loo J" first="Joseph A" last="Loo">Joseph A. Loo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095</wicri:regionArea>
<wicri:noRegion>90095</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Chemistry, University of California, Los Angeles, CA, 90095, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Chemistry, University of California, Los Angeles, CA, 90095</wicri:regionArea>
<wicri:noRegion>90095</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>UCLA/DOE Institute of Genomics and Proteomics, University of California, Los Angeles, CA, 90095, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>UCLA/DOE Institute of Genomics and Proteomics, University of California, Los Angeles, CA, 90095</wicri:regionArea>
<wicri:noRegion>90095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mischel, Paul S" sort="Mischel, Paul S" uniqKey="Mischel P" first="Paul S" last="Mischel">Paul S. Mischel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Ludwig Institute for Cancer research, University of California, San Diego, CA, 92093, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Ludwig Institute for Cancer research, University of California, San Diego, CA, 92093</wicri:regionArea>
<wicri:noRegion>92093</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tamanoi, Fuyuhiko" sort="Tamanoi, Fuyuhiko" uniqKey="Tamanoi F" first="Fuyuhiko" last="Tamanoi">Fuyuhiko Tamanoi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA. fuyut@microbio.ucla.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095</wicri:regionArea>
<wicri:noRegion>90095</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA. fuyut@microbio.ucla.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095</wicri:regionArea>
<wicri:noRegion>90095</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26134617</idno>
<idno type="pmid">26134617</idno>
<idno type="doi">10.1186/s12943-015-0396-z</idno>
<idno type="pmc">PMC4489161</idno>
<idno type="wicri:Area/Main/Corpus">000C30</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C30</idno>
<idno type="wicri:Area/Main/Curation">000C30</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C30</idno>
<idno type="wicri:Area/Main/Exploration">000C30</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Significance of filamin A in mTORC2 function in glioblastoma.</title>
<author>
<name sortKey="Chantaravisoot, Naphat" sort="Chantaravisoot, Naphat" uniqKey="Chantaravisoot N" first="Naphat" last="Chantaravisoot">Naphat Chantaravisoot</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095</wicri:regionArea>
<wicri:noRegion>90095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wongkongkathep, Piriya" sort="Wongkongkathep, Piriya" uniqKey="Wongkongkathep P" first="Piriya" last="Wongkongkathep">Piriya Wongkongkathep</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095</wicri:regionArea>
<wicri:noRegion>90095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Loo, Joseph A" sort="Loo, Joseph A" uniqKey="Loo J" first="Joseph A" last="Loo">Joseph A. Loo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095</wicri:regionArea>
<wicri:noRegion>90095</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Chemistry, University of California, Los Angeles, CA, 90095, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Chemistry, University of California, Los Angeles, CA, 90095</wicri:regionArea>
<wicri:noRegion>90095</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>UCLA/DOE Institute of Genomics and Proteomics, University of California, Los Angeles, CA, 90095, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>UCLA/DOE Institute of Genomics and Proteomics, University of California, Los Angeles, CA, 90095</wicri:regionArea>
<wicri:noRegion>90095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mischel, Paul S" sort="Mischel, Paul S" uniqKey="Mischel P" first="Paul S" last="Mischel">Paul S. Mischel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Ludwig Institute for Cancer research, University of California, San Diego, CA, 92093, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Ludwig Institute for Cancer research, University of California, San Diego, CA, 92093</wicri:regionArea>
<wicri:noRegion>92093</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tamanoi, Fuyuhiko" sort="Tamanoi, Fuyuhiko" uniqKey="Tamanoi F" first="Fuyuhiko" last="Tamanoi">Fuyuhiko Tamanoi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA. fuyut@microbio.ucla.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095</wicri:regionArea>
<wicri:noRegion>90095</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA. fuyut@microbio.ucla.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095</wicri:regionArea>
<wicri:noRegion>90095</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular cancer</title>
<idno type="eISSN">1476-4598</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Actin Cytoskeleton (metabolism)</term>
<term>Carrier Proteins (metabolism)</term>
<term>Cell Adhesion (drug effects)</term>
<term>Cell Line, Tumor (MeSH)</term>
<term>Cell Movement (drug effects)</term>
<term>Enzyme Activation (drug effects)</term>
<term>Filamins (metabolism)</term>
<term>Glioblastoma (metabolism)</term>
<term>Glioblastoma (pathology)</term>
<term>Humans (MeSH)</term>
<term>Indoles (pharmacology)</term>
<term>Mechanistic Target of Rapamycin Complex 2 (MeSH)</term>
<term>Multiprotein Complexes (antagonists & inhibitors)</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protein Binding (MeSH)</term>
<term>Purines (pharmacology)</term>
<term>Rapamycin-Insensitive Companion of mTOR Protein (MeSH)</term>
<term>TOR Serine-Threonine Kinases (antagonists & inhibitors)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activation enzymatique (effets des médicaments et des substances chimiques)</term>
<term>Adhérence cellulaire (effets des médicaments et des substances chimiques)</term>
<term>Compagnon de mTOR insensible à la rapamycine (MeSH)</term>
<term>Complexe-2 cible mécanistique de la rapamycine (MeSH)</term>
<term>Complexes multiprotéiques (antagonistes et inhibiteurs)</term>
<term>Complexes multiprotéiques (métabolisme)</term>
<term>Cytosquelette d'actine (métabolisme)</term>
<term>Filamines (métabolisme)</term>
<term>Glioblastome (anatomopathologie)</term>
<term>Glioblastome (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Indoles (pharmacologie)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Lignée cellulaire tumorale (MeSH)</term>
<term>Mouvement cellulaire (effets des médicaments et des substances chimiques)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protéines de transport (métabolisme)</term>
<term>Purines (pharmacologie)</term>
<term>Sérine-thréonine kinases TOR (antagonistes et inhibiteurs)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Multiprotein Complexes</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carrier Proteins</term>
<term>Filamins</term>
<term>Multiprotein Complexes</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Glioblastome</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Complexes multiprotéiques</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Adhesion</term>
<term>Cell Movement</term>
<term>Enzyme Activation</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Activation enzymatique</term>
<term>Adhérence cellulaire</term>
<term>Mouvement cellulaire</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Actin Cytoskeleton</term>
<term>Glioblastoma</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexes multiprotéiques</term>
<term>Cytosquelette d'actine</term>
<term>Filamines</term>
<term>Glioblastome</term>
<term>Protéines de transport</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Glioblastoma</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Indoles</term>
<term>Purines</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Indoles</term>
<term>Purines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Line, Tumor</term>
<term>Humans</term>
<term>Mechanistic Target of Rapamycin Complex 2</term>
<term>Phosphorylation</term>
<term>Protein Binding</term>
<term>Rapamycin-Insensitive Companion of mTOR Protein</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Compagnon de mTOR insensible à la rapamycine</term>
<term>Complexe-2 cible mécanistique de la rapamycine</term>
<term>Humains</term>
<term>Liaison aux protéines</term>
<term>Lignée cellulaire tumorale</term>
<term>Phosphorylation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Glioblastoma multiforme (GBM) is one of the most highly metastatic cancers. GBM has been associated with a high level of the mechanistic target of rapamycin complex 2 (mTORC2) activity. We aimed to observe roles of mTORC2 in GBM cells especially on actin cytoskeleton reorganization, cell migration and invasion, and further determine new important players involved in the regulation of these cellular processes.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>To further investigate the significance of mTORC2 in GBM, we treated GBM cells with PP242, an ATP-competitive inhibitor of mTOR, and used RICTOR siRNA to knock down mTORC2 activity. Effects on actin cytoskeleton, focal adhesion, migration, and invasion of GBM cells were examined. To gain insight into molecular basis of the mTORC2 effects on cellular cytoskeletal arrangement and motility/invasion, we affinity purified mTORC2 from GBM cells and identified proteins of interest by mass spectrometry. Characterization of the protein of interest was performed.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>In addition to the inhibition of mTORC2 activity, we demonstrated significant alteration of actin distribution as revealed by the use of phalloidin staining. Furthermore, vinculin staining was altered which suggests changes in focal adhesion. Inhibition of cell migration and invasion was observed with PP242. Two major proteins that are associated with this mTORC2 multiprotein complex were found. Mass spectrometry identified one of them as Filamin A (FLNA). Association of FLNA with RICTOR but not mTOR was demonstrated. Moreover, in vitro, purified mTORC2 can phosphorylate FLNA likewise its known substrate, AKT. In GBM cells, colocalization of FLNA with RICTOR was observed, and the overall amounts of FLNA protein as well as phosphorylated FLNA are high. Upon treatments of RICTOR siRNA or PP242, phosphorylated FLNA levels at the regulatory residue (Ser2152) decreased. This treatment also disrupted colocalization of Actin filaments and FLNA.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Our results support FLNA as a new downstream effector of mTORC2 controlling GBM cell motility. This new mTORC2-FLNA signaling pathway plays important roles in motility and invasion of glioblastoma cells.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26134617</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>03</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1476-4598</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<PubDate>
<Year>2015</Year>
<Month>Jul</Month>
<Day>02</Day>
</PubDate>
</JournalIssue>
<Title>Molecular cancer</Title>
<ISOAbbreviation>Mol Cancer</ISOAbbreviation>
</Journal>
<ArticleTitle>Significance of filamin A in mTORC2 function in glioblastoma.</ArticleTitle>
<Pagination>
<MedlinePgn>127</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12943-015-0396-z</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Glioblastoma multiforme (GBM) is one of the most highly metastatic cancers. GBM has been associated with a high level of the mechanistic target of rapamycin complex 2 (mTORC2) activity. We aimed to observe roles of mTORC2 in GBM cells especially on actin cytoskeleton reorganization, cell migration and invasion, and further determine new important players involved in the regulation of these cellular processes.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">To further investigate the significance of mTORC2 in GBM, we treated GBM cells with PP242, an ATP-competitive inhibitor of mTOR, and used RICTOR siRNA to knock down mTORC2 activity. Effects on actin cytoskeleton, focal adhesion, migration, and invasion of GBM cells were examined. To gain insight into molecular basis of the mTORC2 effects on cellular cytoskeletal arrangement and motility/invasion, we affinity purified mTORC2 from GBM cells and identified proteins of interest by mass spectrometry. Characterization of the protein of interest was performed.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">In addition to the inhibition of mTORC2 activity, we demonstrated significant alteration of actin distribution as revealed by the use of phalloidin staining. Furthermore, vinculin staining was altered which suggests changes in focal adhesion. Inhibition of cell migration and invasion was observed with PP242. Two major proteins that are associated with this mTORC2 multiprotein complex were found. Mass spectrometry identified one of them as Filamin A (FLNA). Association of FLNA with RICTOR but not mTOR was demonstrated. Moreover, in vitro, purified mTORC2 can phosphorylate FLNA likewise its known substrate, AKT. In GBM cells, colocalization of FLNA with RICTOR was observed, and the overall amounts of FLNA protein as well as phosphorylated FLNA are high. Upon treatments of RICTOR siRNA or PP242, phosphorylated FLNA levels at the regulatory residue (Ser2152) decreased. This treatment also disrupted colocalization of Actin filaments and FLNA.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Our results support FLNA as a new downstream effector of mTORC2 controlling GBM cell motility. This new mTORC2-FLNA signaling pathway plays important roles in motility and invasion of glioblastoma cells.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chantaravisoot</LastName>
<ForeName>Naphat</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wongkongkathep</LastName>
<ForeName>Piriya</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Loo</LastName>
<ForeName>Joseph A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biological Chemistry, University of California, Los Angeles, CA, 90095, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>UCLA/DOE Institute of Genomics and Proteomics, University of California, Los Angeles, CA, 90095, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mischel</LastName>
<ForeName>Paul S</ForeName>
<Initials>PS</Initials>
<AffiliationInfo>
<Affiliation>Ludwig Institute for Cancer research, University of California, San Diego, CA, 92093, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tamanoi</LastName>
<ForeName>Fuyuhiko</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA. fuyut@microbio.ucla.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA. fuyut@microbio.ucla.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 CA041996</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM103479</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01CA41996</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01GM103479</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>07</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Mol Cancer</MedlineTA>
<NlmUniqueID>101147698</NlmUniqueID>
<ISSNLinking>1476-4598</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064448">Filamins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007211">Indoles</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011687">Purines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C492571">RICTOR protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000076226">Rapamycin-Insensitive Companion of mTOR Protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076225">Mechanistic Target of Rapamycin Complex 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>H5669VNZ7V</RegistryNumber>
<NameOfSubstance UI="C572919">PP242</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D008841" MajorTopicYN="N">Actin Cytoskeleton</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002448" MajorTopicYN="N">Cell Adhesion</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045744" MajorTopicYN="N">Cell Line, Tumor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002465" MajorTopicYN="N">Cell Movement</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004789" MajorTopicYN="N">Enzyme Activation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064448" MajorTopicYN="N">Filamins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005909" MajorTopicYN="N">Glioblastoma</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007211" MajorTopicYN="N">Indoles</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076225" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011687" MajorTopicYN="N">Purines</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076226" MajorTopicYN="N">Rapamycin-Insensitive Companion of mTOR Protein</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>01</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>06</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>7</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>7</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>3</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26134617</ArticleId>
<ArticleId IdType="doi">10.1186/s12943-015-0396-z</ArticleId>
<ArticleId IdType="pii">10.1186/s12943-015-0396-z</ArticleId>
<ArticleId IdType="pmc">PMC4489161</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cell. 2010 Jun 11;38(5):768-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20542007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2001 Feb;2(2):138-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11252955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer. 2013;12:31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23617883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Adh Migr. 2011 Mar-Apr;5(2):160-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21169733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2007 May;170(5):1445-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17456751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Biol Regul. 2013 May;53(2):202-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23231881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocr Relat Cancer. 2013 Dec;20(6):R341-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24108109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Aug;18(8):3144-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17567956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2011;4(154):eg1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2001 Jan 11;344(2):114-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11150363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2013 May;19(5):619-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23584089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Apr;24(7):3025-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15024089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuro Oncol. 2010 Aug;12(8):882-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20472883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2013 Oct 2;33(40):15735-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24089482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2004 Nov;6(11):1034-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15516996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Feb 18;307(5712):1098-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15718470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Jul 23;27(14):1919-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18566587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Mol Med. 2014;6(8):995-1002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24992933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Neurol. 2012 Dec;25(6):774-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23007009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Discov. 2011 Nov;1(6):524-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22145100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jun 27;278(26):23561-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12704190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2009;2(101):ra82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20009104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2013 Nov 5;18(5):726-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24140020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2013 Sep 26;51(6):829-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24035500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Aug;19(8):3357-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18495866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2015 Jan 1;6(1):427-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25460505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuro Oncol. 2009 Feb;11(1):9-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18812521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2004 Nov;6(11):1122-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15467718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Neuropathol. 2007 Aug;114(2):97-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17618441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2011 Jan;12(1):21-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21157483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2008 Nov;4(11):691-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18849971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Repair (Amst). 2004 Aug-Sep;3(8-9):883-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15279773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Chem. 2014 Jul 07;2:45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25072053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Oct 6;127(1):125-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16962653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cancer Res Clin Oncol. 2014 Nov;140(11):1913-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24908328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2006 Sep;6(9):729-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16915295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2013 Nov;24(21):3369-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24006489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2013 Apr 15;201(2):293-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23569215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2013 Apr 15;126(Pt 8):1713-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23641065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci Res. 2012 Apr;90(4):769-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22183788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Physiol Biochem. 2011;27(3-4):207-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21471709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Endocrinol Metab. 2014 Jul;25(7):364-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24856037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2006 Feb 15;446(2):140-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16442073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biosyst. 2010 Jul;6(7):1227-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20461251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioarchitecture. 2013 Jul-Aug;3(4):113-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24721730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2010 Feb;298(2):C206-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19923422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2007 Dec 15;67(24):11712-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18089801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioarchitecture. 2013 Jul-Aug;3(4):77-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24002531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2013 Apr;16(4):441-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23455608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014;9(10):e111476</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25360538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2014 Oct 1;84(1):78-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25277454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2009;2(67):pe26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19383977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncol Lett. 2013 Sep;6(3):681-686</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24137390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2000 Mar 17;1496(1):3-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10722873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Biosci. 2013 Feb 06;3(1):7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23388158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neoplasia. 2005 Sep;7(9):862-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16229809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2013 Aug;41(4):889-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23863151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(1):e8560</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20052411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Oncol. 2009 Oct;35(4):731-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19724909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Jul 27;14(14):1296-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15268862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2007 Aug 1;405(3):513-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17461779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Res. 2010 Nov;35(11):1796-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20730561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jul 5;288(27):19649-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23703609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Sci. 2009 Sep;100(9):1748-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19594548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2002 Sep;4(9):681-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12198493</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Chantaravisoot, Naphat" sort="Chantaravisoot, Naphat" uniqKey="Chantaravisoot N" first="Naphat" last="Chantaravisoot">Naphat Chantaravisoot</name>
</noRegion>
<name sortKey="Loo, Joseph A" sort="Loo, Joseph A" uniqKey="Loo J" first="Joseph A" last="Loo">Joseph A. Loo</name>
<name sortKey="Loo, Joseph A" sort="Loo, Joseph A" uniqKey="Loo J" first="Joseph A" last="Loo">Joseph A. Loo</name>
<name sortKey="Loo, Joseph A" sort="Loo, Joseph A" uniqKey="Loo J" first="Joseph A" last="Loo">Joseph A. Loo</name>
<name sortKey="Mischel, Paul S" sort="Mischel, Paul S" uniqKey="Mischel P" first="Paul S" last="Mischel">Paul S. Mischel</name>
<name sortKey="Tamanoi, Fuyuhiko" sort="Tamanoi, Fuyuhiko" uniqKey="Tamanoi F" first="Fuyuhiko" last="Tamanoi">Fuyuhiko Tamanoi</name>
<name sortKey="Tamanoi, Fuyuhiko" sort="Tamanoi, Fuyuhiko" uniqKey="Tamanoi F" first="Fuyuhiko" last="Tamanoi">Fuyuhiko Tamanoi</name>
<name sortKey="Wongkongkathep, Piriya" sort="Wongkongkathep, Piriya" uniqKey="Wongkongkathep P" first="Piriya" last="Wongkongkathep">Piriya Wongkongkathep</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C19 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C19 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26134617
   |texte=   Significance of filamin A in mTORC2 function in glioblastoma.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26134617" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020